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Preparation, Characterization, and Comparison of Properties of 
Alumina Catalysts 

The catalytic activity of alumina is influ- 
enced by the conditions at which it is pre- 
pared such as preheating time and tempera- 
ture (l-4), final calcination temperature, 
precipitation and ageing of the hydroxide 
(5-7), and the source (1) from which alu- 
mina is obtained. The various commercially 
available catalysts exhibit wide variations 
in their activity and selectivity. However, 
the most important methods in practice for 
the laboratory preparation of alumina cata- 
lysts are (1) hydrolysis of an aluminum salt 
usually the nitrate using aqueous ammonia 
(I), (2) hydrolysis of an aluminum isopro- 
poxide by water (I), and (3) decomposition 
of aqueous Na/K-aluminate by CO2 (2). 
These procedures give the hydroxide in the 
form of gel, whose filtration and washing 
are cumbersome and time-consuming pro- 
cesses. The present paper reports the prep- 
aration of two types of alumina catalyst 
from aluminum isopropoxide. These are (1) 
slow hydrolysis of aluminum isopropoxide 
[Catalyst-31 (a much simplified version of 
the aerogel method (8)) and (2) thermal de- 
composition of aluminum isopropoxide 
[Catalyst-21. 

Aluminum isopropoxide is a desirable 
starting material for the preparation of pure 
alumina, since it can be readily prepared 
from pure aluminum metal and can be fur- 
ther purified by vacuum distillation. The 
methods reported here do not involve filtra- 
tion and results obtained with them were all 
reproducible. Both the catalysts are active 
for conventional alumina-catalyzed reac- 
tions, but differ in their selectivity. The cat- 
alysts have been characterized by their 
crystallinity, structure, surface area, pore- 

size distribution, and pore volume by con- 
ventional nitrogen adsorption-desorption 
method. The observed activity and selec- 
tivity are compared with those of alumina 
samples prepared by the conventional 
method (catalyst-l, hydrolysis of aluminum 
isopropoxide by water (1)) and also with a 
commercial catalyst (catalyst-4). A com- 
parative study of the reactions of benzyl 
alcohol over these catalysts has been re- 
ported earlier (9). 

EXPERIMENTAL 

Alumina catalyst-l was prepared by the 
hydrolysis of double-distilled aluminum 
isopropoxide by water (2). The hydroxide 
was filtered-washed, dried at 120°C for 12 
h, and calcined at 600°C for 6 h. 

Alumina catalyst-2 Double-distilled alu- 
minum isopropoxide (10) 100 g was taken in 
a 500~ml RB flask fitted with an air con- 
denser and a calcium chloride guard tube. 
The aluminum isopropoxide was then re- 
fluxed on a sand bath whose temperature 
was kept at 400-450°C until all the alumi- 
num isopropoxide was decomposed to 
white flake-like solid (nearly 3-4 h). The 
flakes were scraped, taken in a silica cruci- 
ble, and calcined at 600°C for 6 h in a muffle 
furnace. The alumina thus obtained 
weighed 23 g (- 100% in yield). It was ob- 
served that if the same experiment was car- 
ried out in a smaller flask, the alumina was 
found to be contaminated with carbon de- 
posits (probably due to the polymerization 
and decomposition of propene produced in 
the reaction). 

Alumina sample 3. Double-distilled alu- 
minum isopropoxide 204 g (1 mole) was 
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taken in a wide porcelain dish such that the 
liquid formed a I- to 2-cm-thick layer and 
was exposed to the atmosphere (relative 
humidity 50-70%) for 48 h. The porcelain 
container was kept covered by a cloth to 
prevent contamination by dust from the at- 
mosphere. As the hydrolysis by atmo- 
spheric moisture progressed, the crust was 
broken up periodically with a glass rod. The 
lumps formed were scraped and taken up in 
a silica crucible. This was heated initially in 
an air oven at 120°C for 12 h. and then 
calcined at 600°C for 6 h. The white powder 
so obtained weighed 55 g (-100% in yield). 

Alumina catalyst-4 was a commercial 
catalyst (Houdry Hard G 200 A). 

The values of surface area and pore-size 
distribution of these samples were com- 
puted from nitrogen adsorption and desorp- 
tion isotherms. Acidity measurements were 
done by n-butylamine adsorption methods 
(II). The general experimental technique 
and the flow reactor used have already been 
described (12). 

RESULTS AND DISCUSSIONS 

The values of total acidity (as determined 
by n-butylamine adsorption), surface area, 
average pore radius, specific pore volume, 
and pore size distribution in terms of per- 
centage pore volume in the range 2-20 nm 
are shown in Table 1. Sample-3 and sample- 
1 have nearly the same total pore volume. 
However, there is a drastic change in the 
distribution of the pore size. Though the 
sample-2 has less total pore volume com- 
pared to the other samples the pore size 
distribution is similar to that of sample-3. 
Samples-2 and -3 are rich in mesopores (5- 
10 nm) and the sample-l is rich in micro- 
pores (below 2 nm). 

The diffraction pattern of the sample-3 
has a clear indication of the crystalline 
modification of q-alumina (ZJ), though the 
presence of small amount of y-alumina is 
not ruled out. The samples-l and -2 pre- 
dominantly have y-alumina modification in 
addition to small amounts of other modifi- 
cations. 

TABLE 1 

Characterization of Alumina Samples 

NO. Condmon Sample, 

I ? 3 4 

I. Total acidity 7.01 4.77 6.3X 4.01 

[(a9 x 10-41 
2. Surface area (m*/g) 174 120 229 I65 

3. Average pore radius (nm) 8.3 6.4 6.2 ~ 

4. Sp. pore volume (ml/g) 0.72 0.33 0.71 - 

5. Pore radius distribution in terms of % pore volume 

Radius range % Distribution 

Sample I Sample 2 Sample 3 

2 23 I7 IX 

3-4 16.6 12.8 9.7 

4-5 9 II 9.7 

5-10 17.Y 31.9 3x.4 

IO-20 16.6 10.6 II.7 

20 4.3 - 

Activity and Selectivity 

A comparative study on the activity and 
selectivity of these alumina samples has 
been carried out and the results are summa- 
rized in Table 2. It is clear from the results 
that in the dehydration of ethanol, alumina 
sample-3 is more active and selective to- 
ward olefin formation. Sample-l (conven- 
tional alumina) is qualitatively similar in ac- 
tivity and selectivity as sample-3, sample-2 
is more selective toward ether formation. 
Sample-4 (commercial sample) is least ac- 
tive compared to other alumina samples. 
Studies on the dehydration of isopropanol 
(not reported here) also showed qualita- 
tively similar results. These results are in 
accordance with our earlier observations 
(9) that in the reaction of benzyl alcohol 
sample-2 is selective for ether formation 
whereas samples-l and -3 are selective for 
disproportionation of benzyl alcohol to tol- 
uene and benzaldehyde. 

Results of the reaction of cyclohexene 
(Table 2) shows that alumina samples-l and 
-3 are active for isomerization whereas 
samples-2 and -4 are inactive under the re- 
action conditions. 

To compare the dehydration versus hy- 
dride-transfer activity (14) of these sam- 
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TABLE 2 

Reactivity and Selectivity of Alumina Sample 

No. Reactant Product Catalyst sample 

1 2 3 4 

Mole % of products 
1. Ethanol” Ethane 60 28 13 2 

Ether 13 34 8 6 
Total conversion 75 63 83 10 

2. Cyclohexeneb Total conversion 
(methylcyclopentenes) 20 - 24 - 

3. Isopropanol Styrened 58 71 38 65 
+ acetophenone< Acetophenoned 41 26 60 30 

Acetone? 56 70 34 62 
Propenee 25 26 62 15 
Isopropanol’ 15 Trace Trace 25 
Diisopropyl ether’ 1 2 - 1 

a Catalyst weight, 1 g; Temperature, 350°C; Flow rate, 20 ml/h; Reactant, 10 ml of 
ethanol (neat). 

b Catalyst weight, 1 g; Temperature, 400°C; Flow rate, 10 ml/h; Reactant, 10 ml of 
cyclohexene (neat). 

c Catalyst weight, I g; Temperature, 350°C; Flow rate, IO ml/h; Reactant, 8.6 x 10-j 
mole of 1: 1 molar solution of isopropanol and acetophenone. 

d Based on acetophenone taken initially. 
c Based on isopropanol taken initially. 

ples, the reaction of acetophenone with iso- 
propanol has been studied and results are 
summarized in Table 2. 

CH3CH(OH)CH3 + PhCOCH3 Route-l_ 

CH3COCH3 + PhCH(OH)CH3 

*cH,CH=CH~ / ? 
-Hz0 

J 

PhCH=CH2 

Here it may be noted that styrene arises by 
the hydride transfer from isopropanol to 
acetophenone followed by the dehydration 
of the methylphenylcarbinol (Route-l). 
Acetone and styrene are formed in equal 
quantities. Propene on the other hand is 
formed from the straight dehydration of iso- 
propanol. Thus the ratio propene versus ac- 
etone or styrene gives the selectivity for de- 
hydration versus hydride transfer. The 
results show that alumina samples-3 and -1 

are more selective toward dehydration of 
isopropanol than for the hydride transfer 
from isopropanol to acetophenone, 
whereas samples-2 and -4 are more selec- 
tive toward the hydride transfer than for the 
dehydration. In all these samples of alu- 
mina only trace amounts of methylphenyl- 
carbinol are found. It seems that the methyl- 
phenylcarbinol formed in the reaction has 
undergone dehydration to styrene under 
the reaction conditions. 

Thus from these studies, it is concluded 
that alumina sample-2 is more selective for 
ether formation in the dehydration of alco- 
hols and less active for the isomerization of 
olefins. Sample-3 is more active as well as 
selective in the dehydration of alcohol to 
olefins and for the isomerization of olefins. 
From the earlier studies (9), it is well estab- 
lished that alumina sample-3 is rich in 
strong acid sites whereas sample-2 is rich in 
weak acid sites. It can be concluded that 
the difference in the activity and selectivity 
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arises due to the distribution of active sites 9. Jayamani, M., and Pillai, C. N., J. Catn/. 82, 485 

with different strength. (1983). 
10. Vogel, A. I., “A Text Book of Practical Organic 
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